PHASE I CULTURAL RESOURCE SURVEY OF THE OMNI COMMERCE PARK BERKELEY COUNTY, SOUTH CAROLINA

Final Report

Cultural Resources Department

February 2012
PHASE I CULTURAL RESOURCES SURVEY
OF THE OMNI COMMERCE PARK
BERKELEY COUNTY, SOUTH CAROLINA

FINAL REPORT

Prepared for:
MeadWestvaco, Inc.
180 Westvaco Road
Summerville, South Carolina 29483

Prepared by:
S&ME, Inc.
134 Suber Road
Columbia, South Carolina 29210

S&ME Project No. 1616-11-507

William Green, M.A., RPA
Principal Investigator

Authors:
Kimberly Nagle, M.S., RPA and Heather C. Jones, M.A.

February 2012
S&ME, Inc. (S&ME), on behalf of MeadWestvaco, Inc., has completed a Phase I cultural resource survey of the proposed Omni Commerce Park located in Berkeley County, South Carolina. The 323-acre property consists of approximately 61 acres of delineated wetlands, 36 acres of buffer area surrounding the wetlands, 100 acres that have been heavily disturbed, and 127 acres of uplands. The wetlands and surrounding buffer areas, which have been set aside as conservation areas, as well as the heavily disturbed areas were excluded from the Phase I survey. Based on the nature of the proposed undertaking and existing topography, the proposed Area of Potential Effects (APE) for the project is considered to be a 0.5-mile radius around the project area. Work for this project was carried out in general accordance with S&ME Proposal Number 1616-8439-11, dated November 11, 2011.

The project area is bounded by wooded and private properties to the north, east, and west, and commercial property and Drop Off Road to the south (Figures 1 and 2). The southern portion of the project area (the heavily disturbed portion) contains the remnants of a large greenhouse and nursery that has been razed, as well as the associated catchment ponds. The razed area is currently used by Baucom Grading and their office building is the only remaining structure. Other disturbance in the project area includes a large transmission line and numerous paved and unpaved roads. Vegetation within the project area consists of mixed pine and hardwood forest, planted pines, wetlands, and several fallow fields.

During the Phase I survey one new archaeological site, 38BK2410 was identified. Site 38BK2410 is an early to mid-twentieth century artifact scatter that was located on the surface of a dirt road. The dirt road and a structure depicted on the 1920 USGS Summerville quadrangle appear to correlate with location of the surface scatter. Site 38BK2410 is recommended ineligible for inclusion in the NRHP based on its lack of integrity and research potential. As there are no historic properties that will be affected by construction, we recommend that no additional cultural resource investigations are necessary for the 323-acre Omni Commerce Park.
Figure 1. Project area and previously recorded cultural resources within a 0.5-mile radius (APE).
Base Map: Summerville (1990) 7.5’ USGS topographic quadrangle.
Figure 2. Aerial photograph of the project area.
TABLE OF CONTENTS

MANAGEMENT SUMMARY ... ii

TABLE OF CONTENTS .. v

FIGURES ... vi

I. INTRODUCTION ... 1

II. ENVIRONMENTAL SETTING ... 5

Location and Setting .. 5

Geology and Topography ... 5

Hydrology .. 5

Soils ... 5

Climate and Vegetation ... 6

III. CULTURAL CONTEXT .. 9

Prehistoric Context .. 9

Paleoindian Period (ca. 13,000–10,000 B.P.) .. 9

Archaic Period (ca. 10,000–3000 B.P.) ... 10

Woodland Period (ca. 3000–1000 B.P.) .. 13

Mississippian Period (ca. 1000–500 B.P.) ... 15

Historic Context .. 15

Early South Carolina .. 16

Seventeenth and Eighteenth Centuries ... 17

Revolutionary War and Antebellum Period .. 21

Civil War and Late Nineteenth Century ... 24

Twentieth Century ... 26

Previously Recorded Cultural Resources .. 28

IV. METHODS .. 29

Archaeological Field Methods ... 29

Laboratory Methods .. 29

Architectural Survey .. 30

National Register Eligibility Assessment ... 30

V. RESULTS ... 31

Archaeological Survey ... 31

Architectural Survey .. 32

VI. SUMMARY AND RECOMMENDATIONS .. 35

REFERENCES CITED ... 36
FIGURES

Figure 1. Cultural resources within a 0.5-mile radius of the project area................................. iii
Figure 2. Aerial photograph of project area.. iv
Figure 3. Disturbed area and catchment ponds, facing west... 2
Figure 4. Transmission line in the northern portion of the project area, facing northwest........... 2
Figure 5. Mixed pine/hardwood forest and fallow field, facing east... 3
Figure 6. Cultural resources recorded within the project area... 4
Figure 7. Soil map of the project area... 8
Figure 8. Portion of de Brahm’s map of 1757 showing Dorchester settlement......................... 18
Figure 9. Portion of Mouzon’s Map of 1775 showing Dorchester/Goose Creek area.............. 23
Figure 10. Portion of Mills’ Atlas map of Colleton District showing project area...................... 23
Figure 11. Portion of 1916 USDA Soil Survey Map showing project area................................. 27
Figure 12. Portion of 1920 USGS topographic map showing project area.................................. 27
Figure 13. 38BK2410 site map.. 33
Figure 14. Site 38BK2410, facing east... 34

TABLES

Table 1. Farm ownership and tenancy systems near the project area.. 25
Table 2. Previously recorded cultural resources within a 0.5-mile radius of the project area..... 28
I. INTRODUCTION

S&ME, Inc. (S&ME), on behalf of MeadWestvaco, Inc., has completed a Phase I cultural resource survey of the proposed Omni Commerce Park located in Berkeley County, South Carolina. The 323-acre property consists of approximately 61 acres of delineated wetlands, 36 acres of buffer area surrounding the wetlands, 100 acres that have been heavily disturbed, and 127 acres of uplands. The wetlands and surrounding buffer areas, which have been set aside as conservation areas, as well as the heavily disturbed areas were excluded from the Phase I survey. Based on the nature of the proposed undertaking and existing topography, the proposed Area of Potential Effects (APE) for the project is considered to be a 0.5-mile radius around the project area. Work for this project was carried out in general accordance with S&ME Proposal Number 1616-8439-11, dated November 11, 2011.

The project area is bounded by wooded and private properties to the north, east, and west, and commercial property and Drop Off Road to the south (Figures 1 and 2). The southern portion of the project area (the heavily disturbed portion) contains the remnants of a large greenhouse and nursery that has been razed, as well as the associated catchment ponds (Figure 3). The razed area is currently used by Baucom Grading and their office building is the only remaining structure. Other disturbance in the project area includes a large transmission line and numerous paved and unpaved roads (Figure 4). Vegetation within the project area consists of mixed pine and hardwood forest, planted pines, wetlands, and several fallow fields (Figure 5).

During the Phase I survey one new archaeological site, 38BK2410 was identified; no previously unrecorded structures were identified (Figure 6). Site 38BK2410 is an early to mid twentieth century artifact scatter that was located on the surface of a dirt road. The dirt road and a structure that appear to correlate with the location of the surface scatter that was identified are depicted on the 1920 USGS Summerville quadrangle.

Fieldwork for the project was conducted from December 5–7, 2011. William Green, M.A., RPA, served as the Project Manager and Principal Investigator for the project and Senior Archaeologist Kimberly Nagle, M.S., RPA, wrote the report with assistance from Architectural Historian/Historian Heather Jones, M.A. Fieldwork was conducted by Kimberly Nagle, Archaeologist Aaron Brummitt, M.A., RPA, Field Directors Jean-Marie Carta and Dara Morin, and Crew Chief Patrick Morgan. Artifacts were analyzed by Jean-Marie Carta. Heather Jones prepared the historical background and produced the graphics for this report.

This report has been prepared in compliance with the National Historic Preservation Act of 1966, as amended; the Archaeological and Historic Preservation Act of 1979; procedures for the Protection of Historic Properties (36 CFR Part 800); and 36 CFR Parts 60 through 79, as appropriate. Field investigations and the technical report meet the qualifications specified in the Secretary of the Interior’s Standards and Guidelines for Archaeology and Historic Preservation (Federal Register [FR] 48:44716–44742) and the South Carolina Standards and Guidelines for Archaeological Investigations (COSCAPA et al. 2005). Supervisory personnel meet the Secretary of the Interior’s Professional Qualifications Standards set forth in 36 CFR Part 61.
Figure 3. Disturbed area and catchment ponds in the southern portion of project area, facing west.

Figure 4. Transmission line in the northern portion of the project area, facing northwest.
Figure 5. Mixed pine/hardwood forest and fallow field, facing east.
Figure 6. Cultural resources within the project area.

Base Map: Summerville (1990) 7.5" USGS topographic quadrangle.
II. ENVIRONMENTAL SETTING

Location and Setting
The project area is located in the southwestern part of Berkeley County, approximately two miles northeast of the city of Summerville. Berkeley County covers approximately 1,099 square miles and is bounded by Clarendon and Williamsburg counties to the north, Georgetown County to the north and east, Charleston County to the south and east, and Dorchester and Orangeburg counties to the west.

The project area is bounded by wooded and private properties to the north, east, and west, and commercial property and Drop Off Road to the south (Figures 1 and 2). The southern portion of the project area contains the remnants of a large greenhouse and nursery that has been razed, as well as the associated catchment ponds (Figure 3). The razed area is currently used by Baucom Grading and their office building is the only remaining structure. Other disturbance in the project area includes a large transmission line and numerous paved and unpaved roads (Figure 4).

Geology and Topography
The project area is located within the Lower Coastal Plain physiographic province. The topography of this region is dominated by up to six archaic marine terraces, exposed by uplifting of the local area above sea level over the last one million years. The Lower Coastal Plain terraces are relatively young features, exhibit only minor surface erosion, and can be traced large distances on the basis of surface elevation. Each terrace forms a thin veneer over older, underlying Coastal Plain marls or limestones. Materials comprising the terraces typically consist of a strand or beach ridge deposit of clean sands at the seaward margin. Between the strand and the toe of the next inland terrace are mainly finely interlayered clays and sands termed backbarrier deposits (Soller and Mills 1991). Old swamp deposits, stumps and buried trees have been covered by the backbarrier deposits in some areas and are usually not evident at the surface. Topography in the project area is flat, with elevations around 70 ft above mean sea level (AMSL) (Figure 1).

Hydrology
Dawson Branch, a small, currently dry tributary of the Ashley River, originates within the central portion of the project area. The Ashley River, part of the Ashley-Combahee-Edisto drainage basin, flows into the Atlantic Ocean near Charleston, approximately 23 miles from the project area. There are additional wetlands in the project area, all located in the northern portion of the project tract.

Soils
Specific soils within the project area consist of moderately well-drained Goldsboro loamy sand; somewhat poorly drained Lynchburg fine sandy loam; and very poorly drained Coxville fine sandy loam, Meggett loam, and Rains fine sandy loam (Long 1980) (Figure 7).
Goldsboro loamy sand consists of very deep, moderately well drained soils that formed in marine terraces within the Coastal Plain uplands. Slopes range from 0 to 10 percent. A typical pedon consists of 20 cm of grayish brown (10YR 5/2) loamy sand (Ap horizon), followed by 10 cm (20–30 cmbs) of pale brown (10YR 6/3) loamy sand (E horizon), 10 cm (30–40 cmbs) of brownish yellow (10YR 6/6) sandy loam (BE horizon), 25 cm (40–65 cmbs) of yellowish brown (10YR 5/6) sandy clay loam (Bt1 horizon), 50 cm (65–115 cmbs) of pale brown (10YR 6/3) sandy clay loam (Bt2 horizon), ending with 75 cm (115–190 cmbs) of gray (10YR 6/1) sandy clay loam (Btg and BCg horizons).

Lynchburg loamy fine sand consists of very deep, somewhat poorly drained soils that formed in marine terraces and flats within the Coastal Plain. Slopes range from 0 to 5 percent. A typical pedon consists of 15 cm of very dark gray (10YR 3/1) loamy sand (Ap horizon), followed by 10 cm (15–25 cmbs) of light olive brown (2.5Y 5/4) loamy sand (E horizon), 15 cm (25–40 cmbs) of light olive brown (2.5Y 5/4) sandy clay loam (Bt horizon), 30 cm (40–70 cmbs) of light brownish gray (2.5Y 6/2) sandy clay loam (Btg1 horizon), 85 cm (70–155 cmbs) of gray (10YR 6/1) sandy clay loam (Btg2 horizon), ending with 35 cm (155–190 cmbs) of gray (10YR 5/1) clay (Btg3 horizon).

Coxville fine sandy loam consists of very deep, poorly drained soils that formed in flats, depressions, and Carolina bays within the Coastal Plain. Slopes range from 0 to 2 percent. A typical pedon consists of 20 cm of dark gray (10YR 4/1) sandy loam (Ap horizon), followed by 5 cm (20–25 cmbs) of gray (10YR 6/1) sandy loam (Eg horizon), 5 cm (25–30 cmbs) of grayish brown (10YR 5/2) sandy clay loam (Btg1 and Btg2 horizons), ending with 80 cm (90–170 cmbs) of gray (10YR 6/1) sandy clay (Btg3 and Btg4 horizons).

Meggett fine sandy loam consists of very deep, poorly drained soils that formed in stream terraces, flood plains, and flats within the Coastal Plain. Slopes range from 0 to 3 percent. A typical pedon consists of 10 cm of dark gray (10YR 4/1) sandy loam (A horizon), followed by 5 cm (10–15 cmbs) of gray (10YR 5/1) sandy loam (E horizon), 20 cm (15–35 cmbs) of gray (10YR 5/1) sandy clay (Btg1 horizon), 65 cm (35–100 cmbs) of gray (10YR 6/1) clay (Btg2 horizon), 20 cm (100–120 cmbs) of light olive gray (5Y 6/2) clay (Btg3 horizon), ending with 70 cm (120–190 cmbs) of gray (5Y 6/1) sandy clay (BCg horizon).

Rains fine sandy loam consists of very deep, poorly drained soils that formed in flats, depressions, and Carolina bays within the Coastal Plain. Slopes range from 0 to 2 percent. A typical pedon consists of 15 cm of very dark gray (10YR 3/1) sandy loam (A horizon), followed by 10 cm (15–25 cmbs) of light brownish gray (10YR 6/2) sandy loam (Eg horizon), 20 cm (25–45 cmbs) of gray (10YR 6/1) sandy loam (Btg1 horizon), 150 cm (45–195 cmbs) of gray (10YR 6/1) sandy clay loam (Btg2, Btg3, Btg4, and BCg horizons), ending with 15 cm (195–210 cmbs) of gray (10YR 7/1) sand (2Cg horizon).

Climate and Vegetation

The climate of Berkeley County is characterized by long, hot summers and moderately short, mild winters. The average daily temperature ranges from 47° F in winter to 80° F in summer. Growing season lasts from March through October, and there are approximately 240 frost free
days. Vegetation within the project area consists of mixed pine and hardwood forest, planted pines, wetlands, and several fallow fields (Figure 5).
Figure 7. Soil types within the project area. Note - soils shown in blue are poorly drained whereas soils depicted in yellow are well drained.

Base Map: NRCS Berkeley County digital soil data available from SCDNR and Summerville (1990) 7.5° USGS topographic quadrangle.
III. CULTURAL CONTEXT

Prehistoric Context

Over the last two decades there has been much debate over when humans first arrived in the New World. The traditional interpretation is that humans first arrived in North America via the Bering land bridge that connected Alaska to Siberia at the end of the Pleistocene, approximately 13,000 years ago. From Alaska and northern Canada, these migrants may have moved southward through an ice-free corridor separating the Cordilleran and Laurentide ice sheets to eventually settle in North and South America. Other hypotheses have people moving south along the Pacific coast rather than through the ice free corridor (Fladmark 1979).

Recently, this interpretation has been called into question, with several sites providing possible evidence for earlier (Pre-Clovis) occupations. These sites include Monte Verde in southern Chile (Dillehay 1989; Meltzer et al. 1997), Meadowcroft Rockshelter in Pennsylvania (Adovasio et al. 1979, 1980a, 1980b, 1990), the Cactus Hill (McAvoy and McAvoy 1997) and Saltville (McDonald 2000) sites in Virginia, and the Topper site in Allendale County, South Carolina (Goodyear 2005). Despite the growing number of sites attributed to pre-Clovis occupations, there are still significant problems surrounding each site that preclude their widespread acceptance.

Paleoindian Period (ca. 13,000–10,000 B.P.)

The Paleoindian period can be tentatively dated from about 13,000–10,000 B.P. At the beginning of this period, most of South Carolina was cool and dry, with boreal tundra and spruce/pine forests covering most of the state. By the end of this period, the climate ameliorated, rainfall was more frequent, and the state was covered with deciduous forests that contained beech, elm, hickory, oak, and birch (Anderson et al. 1996; Anderson and O’Steen 1992; Goodyear et al. 1989). It was also during this time that the large megafauna, including mammoth, mastodon, giant sloth, and bison became extinct. It is still not clear whether humans or the climate played a more prevalent role in the extinction of these large animals, although it is likely that both contributed to their extinction.

Unfortunately, most of our knowledge about the Paleoindian period in the Southeast is based on surface collections and inference rather than controlled subsurface excavations. The limited information we do have, however, suggests that the earliest Native Americans had a mixed subsistence strategy based on the hunting or scavenging of the megafauna and smaller game combined with the foraging of plant foods. Groups are thought to have consisted of small, highly transient bands made up of several nuclear and/or extended families. Settlements appear to be concentrated along major rivers near the Fall Line and in the Coastal Plain, although it is almost certain that many additional sites along the coast have been inundated by the rise of sea level that has occurred since that time (Anderson et al. 1992; Anderson and Sassaman 1996).

Paleoindian artifact assemblages typically consist of diagnostic lanceolate projectile points, scrapers, gravers, unifacial and bifacial knives, and burins. Projectile point types include fluted
and unfluted forms, such as Clovis, Cumberland, Suwanee, Quad, and Dalton (Anderson et al. 1992; Justice 1987:17–43). Tools were typically well-made and manufactured from high-grade, cryptocrystalline rock such as Coastal Plain and Ridge and Valley chert, as well as Piedmont metavolcanics such as rhyolite (Goodyear 1979). Paleoindians traveled long distances to acquire these desirable raw materials, and it is likely that particularly favored quarries were included in seasonal rounds, allowing them to replenish their stock of raw material on an annual basis.

Archaic Period (ca. 10,000–3000 B.P.)

Environmental change at the end of the Pleistocene led to changes in human settlement patterns, subsistence strategies, and technology. As the climate warmed and the megafauna became extinct, population size increased and there was a simultaneous decrease in territory size and settlement range. Much of the Southeast during the early part of this period consisted of a mixed oak-hickory forest. Later, during the Hypsithermal interval between 8000 and 4000 B.P., southern pine communities became more prevalent in the interriverine uplands, and extensive riverine swamps were formed (Anderson et al. 1996; Delcourt and Delcourt 1985).

The Archaic period typically has been divided into three subperiods: Early Archaic (10,000–8000 B.P.), Middle Archaic (8000–5000 B.P.), and Late Archaic (5000–3000 B.P.). Each of these subperiods appears to have been lengthy, and the inhabitants of each were successful in adapting contemporary technology to prevailing climatic and environmental conditions of the time. Settlement patterns are presumed to reflect a fairly high degree of mobility, making use of seasonally available resources in the changing environment across different areas of the Southeast. The people relied on large animals and wild plant resources for food. Group size gradually increased during this period, culminating in a fairly complex and populous society in the Late Archaic. The chronology for the Archaic period in the Carolinas is still derived primarily from Coe’s (1964) seminal work in the Piedmont of North Carolina.

Early Archaic (10,000–8000 B.P.)

Diagnostic artifacts of the Early Archaic include a variety of side- and corner-notched projectile point types such as Dalton, Hardaway, Palmer, Kirk, and Taylor. Other tools of this period include hafted and non-hafted unifacial scrapers, perforators, drills, gravers, hammerstones, grinding stones, and choppers (Coe 1964; Daniel 1992:74). There is also a greater reliance on local lithic sources that there was during the preceding Paleoindian Period, and tools are sometimes made of lesser quality materials (Goodyear et al. 1989:38–39).

During the Early Archaic there appears to be a gradual, but steady increase in population and a shift in settlement patterns. In the Carolinas and Georgia, various models of Early Archaic social organization and settlement have been proposed (Anderson et al. 1992; Anderson and Hanson 1988). In general, these models hypothesize that Early Archaic societies were organized into small, band-sized communities of 25 to 50 people whose main territory surrounded a portion of a major river such as the Pee Dee River (Anderson and Hanson 1988: Figure 3). During the early spring, groups would forage in the Lower Coastal Plain and then move inland to temporary camps in the Piedmont and Mountains during the summer and early fall. In the late fall and winter, these bands would aggregate into larger, logistically provisioned base camps in the upper Coastal Plain, near the Fall Line. It is believed that group movements would have been
circumscribed within major river drainages, and that movement across drainages into other band territories was limited. At a higher level of organization, bands were believed to be organized into larger “macrobands” of 500 to 1500 people that periodically gathered at strategic locations near the Fall Line for communal food harvesting, rituals, and the exchange of mates and information. Recently, Daniel (1998, 2001) has argued that access to high quality lithic material has been an under-appreciated component of Early Archaic settlement strategies. He presents compelling evidence that groups are moving between major drainages just as easily as they are moving along them. In contrast to earlier models, group movements are tethered to stone quarries rather than to specific drainages. Regardless of which model is correct, settlement patterns generally reflect a relatively high degree of mobility, making use of seasonally available resources such as nuts, migratory water fowl, and white-tailed deer.

Middle Archaic (8000–5000 B.P.)

The Middle Archaic subperiod (ca. 8000–5000 B.P.) coincides with the start of the Altithermal (a.k.a. Hypsithermal), a significant warming trend where pine forests replaced the oak-hickory dominated forests of the preceding periods. It was during this time that extensive riverine swamps were formed, and the river and estuary systems took their modern configuration. The relationship between climatic, environmental, and cultural changes during this period, however, is still poorly understood (Sassaman and Anderson 1995:5-14).

In contrast to both the Early and Late Archaic, there seems to be a wider geographic distribution and a higher density of Middle Archaic sites in the region, suggesting that a mid-Holocene population increase may have taken place. This population increase should be viewed with caution; however, as it is primarily based on the distribution of Morrow Mountain points. Morphological correlates of Morrow Mountain points (e.g., Rossville, [Ritchie 1961]), have been found in other regions dating to the Late Archaic and Early Woodland periods. Thus, Morrow Mountain-like points could span a much longer period than is currently believed. Anderson (1996:164) also argues against a substantial population increase, stating “site concentrations in Georgia and the Carolinas are … unlikely to represent the presence of dense populations, but instead reflect the remains of small, organizationally uncomplicated groups ranging widely over the landscape.” Regardless of whether there was a population increase, small, mobile hunting and gathering bands probably still formed the core social and economic unit in South Carolina.

Large Middle Archaic sites tend to occur along rivers, while numerous, small upland lithic scatters dot the interriverine landscape. Subsistence was likely based on a wide variety of resources such as white-tailed deer, squirrel, nuts, fish, and migratory birds, although direct evidence of Middle Archaic subsistence is generally lacking in South Carolina. Unlike the subsequent Late Archaic, shellfish do not seem to have been an important part of the diet.

Middle Archaic tools tend to be expediently manufactured and have a more rudimentary appearance than those found during the preceding Paleoindian and Early Archaic periods. They are also made predominately of locally available raw materials (Blanton and Sassaman 1989). Diagnostic projectile points of the Middle Archaic include bifurcated points such as McCorkle, Lecroy, Kanawha, and St. Albans, and later stemmed points such as Stanly and Morrow Mountain. There are also several transitional Middle Archaic-Late Archaic forms such as Guilford, Brier Creek and Allendale/MALA (an acronym for Middle Archaic Late Archaic).
Ground stone tools such as axes, adzes, grinding stones, and atlatl weights also become more common during the Middle Archaic.

Late Archaic (5000–3000 B.P.)

The Late Archaic subperiod, which lasted from about 5000–3000 B.P., saw a number of important developments in the region, including increasing sedentism, the introduction of soapstone and ceramic vessel technology, the use of pit storage, and possibly the beginnings of small-scale horticulture. On the coast, Late Archaic sites are found both with and without significant amounts of shell. Sites with shell occur as middens, mounds, or most spectacularly shell rings, which likely served as seasonal gathering, feasting, and ceremonial areas (Saunders and Russo 2002). Recent analyses of Late Archaic settlement patterns in the Upper Coastal Plain and adjacent areas indicate that groups gathered in large numbers at sites along major rivers in the spring and summer, and established base camps near large tributaries that were occupied during the spring through early fall. These large gathering areas may have been used for ritual feasting and other communal activities; at least one site, Stallings Island in the middle Savannah River Valley, seems to have functioned as a mortuary as well (Sassaman et al. 2006). In the late fall and winter, populations dispersed into the uplands living in small, semiautonomous groups (Sassaman and Anderson 1995; Sassaman et al. 1990).

In the spring and summer, Late Archaic people gathered large amounts of shellfish. It is not known why this productive resource was not exploited earlier, but one explanation is that the environmental conditions conducive to the creation of shellfish beds were not in place until the Late Archaic. Other resources that would have been exploited in the spring and summer months include fish, white-tailed deer, small mammals, birds and turtles (House and Ballenger 1976; Stoltman 1974). During the late fall and winter, populations likely subsisted on white-tailed deer, turkey, and nuts such as hickory and acorn. It is also possible that plants such as *Cucurbita* (squash and gourds), sunflower, sumpweed, and chenopod, were being cultivated on a small-scale basis, but direct evidence for these cultigens is lacking in South Carolina.

The most common diagnostic stone tool of the Late Archaic period is the Savannah River point (Coe 1964), a broad-bladed stemmed point found under a variety of names from Florida to Canada. There are also smaller variants of Savannah River points, including Otarre Stemmed and Small Savannah River points that date to the transitional Late Archaic/Early Woodland. Other Late Archaic artifacts include soapstone cooking discs, winged bannerstones, cruciform drills, shell tools, worked bone, and most importantly fiber-tempered Stallings Island and sand-tempered Thom’s Creek pottery.

Both Stallings Island and Thom’s Creek pottery date from about 4500–3000 B.P. and have a wide variety of surface treatments including plain, punctated, and incised designs (Sassaman et al. 1990). For a long time it was believed that fiber-tempered Stallings Island pottery was the oldest pottery in the region (perhaps in the New World), and that sand-tempered Thom’s Creek wares appeared a few centuries later (Sassaman 1993). Recent work at several shell ring sites on the coast, however, has demonstrated that the two types are contemporaneous, with Thom’s Creek possibly even predating Stallings Island along the coast (Heide and Russo 2003; Russo and Heide 2003; Saunders and Russo 2002).
Woodland Period (ca. 3000–1000 B.P.)

The Woodland period sees a number of important developments in the region, including a gradual increase in population and sedentism; the widespread adoption of ceramic vessel technology; the introduction of bow and arrow technology; the intensification of horticultural activities; the establishment of long distance trading networks; and the use of conical burial mounds for interring the dead. Like the preceding Archaic Period, the Woodland is traditionally divided into three subperiods: Early Woodland (3000–2500 B.P.), Middle Woodland (2500–1500 B.P.), and Late Woodland (1500–1000 B.P.). Each of these subperiods is discussed below; however, it should be noted that there is no well-defined cultural sequence for this portion of South Carolina coast, and that ceramic typologies are drawn primarily from surrounding areas.

Early Woodland (3000–2500 B.P.)

By 3000 B.P., pottery was used throughout most of the Southeast and there is a proliferation of pottery styles in the Carolinas and Georgia. In the Coastal Plain of South Carolina, Refuge phase ceramics are indicative of the Early Woodland period. This pottery is characterized by coarse sand-tempered wares with surface treatments that include simple stamping, punctate, plain, and dentate stamping (DePratter 1979; Sassaman 1993; Williams 1968). Diagnostic bifaces of this period include Otarre, Swannanoa, and Gary stemmed points, as well as Badin Crude Triangular points (Anderson and Joseph 1988; Coe 1964:123–124, Sassaman et al. 1990).

Subsistence data indicate a continuation of Late Archaic diet, including white-tailed deer, bear, small mammals, reptiles and fish (Hanson and DePratter 1985; Marrinan 1975). One major difference, however, is that shellfish do not appear to have been an important part of the diet. Early Woodland sites tend to be small, seasonal camps located away from the marshes where shellfish are found. This may be a result of rising sea levels, which inundated the shellfish beds and possibly any sites located along the coast and tidal marshes (Trinkley 1990:12).

Middle Woodland (2500–1500 B.P.)

Middle Woodland pottery in coastal areas of South Carolina, Georgia, and Florida is represented by the Deptford pottery series, which dates from about 2800–1500 B.P. This coarse sand/ grit-tempered pottery represents a continuation of the Early Woodland Refuge series and is often found in association with Refuge pottery. Surface treatments include plain, check stamped, linear check stamped, cordmarked, and simple stamped applications (DePratter 1979; Waring and Holder 1968). On the northern South Carolina coast and in coastal North Carolina, a similar series, Deep Creek, has been identified. Like Deptford, this is a coarse sand tempered pottery that contains cordmarked and simple stamped surface treatments. Unlike Deptford, however, fabric and net impressed surface treatments are prevalent and check stamping is absent (Phelps 1983; Trinkley 1990). Yadkin Large Triangular points are the most common diagnostic projectile points of the Middle Woodland (Coe 1964); although Trinkley (1989:78) mentions a very small stemmed point he calls Deptford Stemmed. Other artifacts found in Middle Woodland assemblages include clay platform pipes, ground and polished stone ornaments, engraved shell and bone, bone tools, bifacial knives, and sharks tooth pendants (Sassaman et al. 1990:96; Waring and Holder 1968).
Middle Woodland occupations in South Carolina are not well documented and settlement models tend to follow Milanich’s “seasonal transhumance” model for the Deptford period in Florida (Milanich 1971; Milanich and Fairbanks 1980), which posits that in the winter and summer months groups moved to the coast and lived in small, semi-permanent villages adjacent to tidal creeks and marshes. From these locations they would fish, gather shellfish, and exploit a variety of other marine and estuarine resources. In the fall, small groups moved inland to terraces adjacent to swamps to gather nuts and hunt white-tailed deer (Cantley and Cable 2002:29; Trinkley 1989:78-79). Horticulture is thought to have increased in importance during this period, with plants such as maygrass, goosefoot, knotweed, and sunflower being harvested. Unfortunately, evidence for Middle Woodland horticulture in South Carolina is still lacking.

In contrast to Milanich’s model, evidence from the G.S. Lewis West site (38AK228) in Aiken County (Sassaman et al. 1990:96-98) suggests a year round settlement occupied by a small resident population. Over 500 features, including pits, posts, human burials, and dog burials, were found at the site. White-tail deer was the primary food source, with alligator, turtle, fish, turkey, freshwater mussels, hickory and acorns also being found (Sassaman et al. 1990:96). Based on the evidence at G.S. Lewis and surrounding sites at the Savannah River Site, Sassaman et al. (1990:98) suggest a pattern where small villages were occupied on a year-round basis, with smaller outlying sites (e.g., 38LX5) representing seasonally occupied logistical camps.

Late Woodland (1500–1000 B.P.)

Very little is known about the Late Woodland period (1500–1000 B.P.) in South Carolina. In the Coastal Plain, there is a confusing proliferation of ceramic types for the Late Woodland period, including Wilmington, Hanover, Mount Pleasant, and Cape Fear (Anderson et al. 1996). Ceramics are tempered with either sand or grog and contain cordmarked or fabric-impressed surface treatments. Grog-tempered Wilmington cordmarked pottery is found more frequently on the southern coast, whereas Hanover grog-tempered fabric impressed pottery is found more often to the north, although there is substantial overlap between the two (DePrattter 1979; Herbert and Mathis 1996:149). As the two series are very similar, Anderson et al. (1996:264) recommend combining them both into the Wilmington series.

Cape Fear pottery is nearly identical to the Hanover series, but is tempered with sand rather than grog. Also, cordmarking seems to be more common on Hanover sherds, while fabric-impressing is more common on the Cape Fear pottery (Herbert and Mathis 1996). Cape Fear ceramics have been found at the Mattassee Lake site (38BK226), with dates ranging from 1240–1430 B.P. (Anderson et al. 1982:354), while similar ceramics have been found at the Sandy Island site (38GE469) with dates ranging from 820–1180 B.P. (Clement et al. 2001:30), and at the Tidewater site (38HR254) dating from 860–1020 B.P. (Southerlin et al. 1997:75–77).

Toward the latter end of the Late Woodland and incipient Mississippian periods, ceramic assemblages in coastal South Carolina show more localized developments. St. Catherines pottery is a fine grog-tempered found along the lower coast, with surface treatments that include cordmarked, net-impressed, plain and burnished plain (Anderson et al. 1996; DePrattter 1979). Along the upper coast and interior Coastal Plain, Santee Simple Stamped is a transitional Late Woodland/Early Mississippian type, with dates from Mattassee Lake ranging from 610–1140 B.P. (Anderson et al. 1982:354).
Mississippian Period (ca. 1000–500 B.P.)

The Mississippian Period saw dramatic changes across most the Southeast. Mississippian societies were complex sociopolitical entities that were based at mound centers, usually located in the floodplains along major river systems. The flat-topped platform mounds served as both the literal and symbolic manifestation of a complex sociopolitical and religious system that linked chiefdoms across a broad network stretching from the Southeastern Atlantic Coast, to Oklahoma (Spiro Mounds) in the west, to as far north as Wisconsin (Aztalan). Mound centers were surrounded by outlying villages that usually were built along major rivers to take advantage of the rich floodplain soils. Smaller hamlets and farmsteads dotted the landscape around villages and provided food, tribute, and services to the chief in return for protection and inclusion in the sociopolitical system. While Mississippian subsistence was focused to a large extent on intensive maize agriculture, the hunting and gathering of aquatic and terrestrial resources supplemented Mississippian diets (Anderson 1994).

Mound centers have been found along most major river systems in the Southeast, and South Carolina is no exception. Major Mississippian mounds in the area include the Belmont and Mulberry sites along the Wateree River in central South Carolina; Santee/Fort Watson/Scotts Lake on the Santee River; the Irene site near Savannah; Hollywood, Lawton, Red Lake, and Mason’s Plantation in the central Savannah River Valley; and Town Creek along the Pee Dee River in North Carolina (Anderson 1994). There also seems to be a substantial Mississippian presence on the coast near Beaufort that includes the Green Shell Enclosure, Indian Hill, Little Barnwell Island, and Altamaha (Green and Bates 2003).

Artifacts of the Mississippian period include small triangular projectile points, ground stone tools, and polished stone objects. In addition, various ceremonial items were manufactured from stone, bone, shell, mica, and copper that were used as symbolic markers of chiefly power and status. Mississippian ceramic styles were also different from the preceding Woodland Period and are regionally variable. Along the southern South Carolina coast and into Georgia, the Savannah series is the dominant pottery type (DePratter 1979; Williams 1968); however, along the northern coast Late Woodland styles appear to extend into the Middle Mississippian Period. Recent investigations at site 38HR243 along the Little River Neck in Horry County yielded radiocarbon dates of 750±80 B.P. and 790±80 B.P. from a pit feature containing shell-scraped, cordmarked, check stamped, and fabric-impressed pottery (Reid et al. 1999). In contrast, site 38HR254, located less than 600 m to the north (Southerlin et al. 1997), yielded slightly later dates of 660±60 B.P. and 810±60 B.P. (shell, calibrated to a.d. 1430–1645) from a shell-filled pit containing curvilinear complicated stamped pottery. At site 38GE32 along the Sampit River in Georgetown County, Mississippian complicated stamped, check stamped, and textile-impressed pottery were all found in association with a feature yielding a human cremation (Green and Holland 2004).

Historic Context

The project area is located along Interstate 26, east of the town of Summerville and northwest of the town of Goose Creek. Although part of Summerville, which is primarily within Dorchester County, the tract is located in Berkeley County, near the boundary between the two entities.
Historically, this was also near the boundary between St. George’s Parish and St. James Goose Creek Parish. The area is situated within the Coastal Plain, along Sawmill Branch (formerly Bossua Creek), a small tributary of the Ashley River.

Early South Carolina

The sixteenth century was a period of tremendous interest in exploration and colonization. European nations sought to increase their power and wealth by claiming vast amounts of territory, with each attempting to outdo the others. The early 1500s saw successful Spanish colonization of the Caribbean and by the 1520s they had become interested in the coastal areas of North America, including the territory that would become South Carolina. In 1526, Spain attempted to colonize an area along the Carolina coastline, founding San Miguel de Gualdape. This unsuccessful settlement lasted less than a year, yet Spanish desire to establish a permanent settlement in South Carolina remained, resulting in the successful attempt at Santa Elena on Parris Island in 1566. The founding of Santa Elena was fueled by Spain’s need to protect its profitable Florida lands from the French, who had also attempted to create a settlement in the Port Royal area, called Charlesfort, in 1562. The Spanish colony at Santa Elena lasted for 21 years, until 1587 when Spain sought to consolidate its North American power at St. Augustine. After the abandonment of Santa Elena, colonization efforts in the South Carolina area would cease until the next century (Edgar 1998:22-33).

England had attempted to colonize North America in the late sixteenth century, but these efforts all ended in failure. However, the successful settlements in Virginia, Massachusetts, and Barbados in the early 1600s renewed interest in colonization possibilities along the Carolina coast. Sir Robert Heath was the first to obtain a charter to colonize in the area in 1629, but his attempts, along with those by Captain Henry Taverne, failed to result in settlements. The restoration of Charles II as king revived attention on the Carolina area and in 1663 eight Lords Proprietors obtained a charter for the Carolina lands. After a handful of unsuccessful attempts to establish a colony, the city of Charles Towne (later Charleston) was founded in 1670 at Albemarle Point on the Ashley River. In 1680, the colonists moved Charleston to the more advantageous position on Oyster Point, between the Ashley and Cooper Rivers, and within three years of the move, the town boasted a population of approximately 1,000 people (Edgar 1998:35-48; Rowland et al. 1996:58-65).

The Lords Proprietors viewed the Carolina settlement as an economic venture and they expected to make large profits from the colony’s exports. To realize these profits, the Lords Proprietors sought complete control of all economic and political decisions made in the colony. The Fundamental Constitutions of Carolina, commissioned by the Proprietors and written by John Locke was meant to secure this control; although the colonists never ratified the Fundamental Constitutions, this document had great influence, providing a de facto plan for the shaping of the colony. The Proprietors control of Carolina, however, only lasted until 1719, when the colonists determined that they would be better served by the British royal government and voted to put themselves under its control (Edgar 1998:41-42, 82-83, 109).

In 1682, the Carolina province was divided into three counties: Colleton, Berkeley, and Craven. These counties had somewhat natural boundaries, with their borders defined by rivers. The counties, however, had no political standing; they were used primarily for situating land grants
and all government activities were concentrated in Charleston. The project area was then part of Berkeley County, which spanned from the Stono River north to Awendaw Creek (then called Seewee Creek) (Roberts et al. 2006:13; Stauffer 1994:1).

Seventeenth and Eighteenth Centuries

Settlement began in the area fairly soon after Charles Towne’s founding. The first land grants near Goose Creek date to 1672 and 1673, while a 12,000 acre barony along the Ashley River in Dorchester County was granted to the Earl of Shaftsbury, Lord Ashley Cooper, in 1675. By 1680, a fairly large settlement was already present near Goose Creek, and twenty years later settlers had already claimed nearly all the lands along the Back River and Goose Creek (Heitzler 2005:30; Waring 1911:62). Plantations along the upper Ashley River and its tributaries were granted to Daniel Axtell and his widow, Lady Rebecca Axtell, in the 1680s and 1690s, and the Middleton and Waring families in the 1690s. In 1695, a group of Puritan settlers from Dorchester, Massachusetts claimed 4,050 acres along Bossua Creek and the northeast side of the Ashley River; they established the colonial village of Dorchester on a 45 acre parcel in 1697 (Figure 8). The early inhabitation of the Dorchester/Goose Creek area was due to the desirability of its location, close enough to Charleston to offer some protection from the Native Americans, who were sometimes hostile to the settlers, with rich land that could be used for farming (Fick and Davis 1997:9; Waring 1911:5).

Despite these advantages, during the first years of its existence the inland settlements were still mostly comprised of wilderness. The families living in the area faced “many years of problems and challenges before marsh and pinelands were shaped into prosperous plantations” (Heitzler 2005:37). Yet, successful plantations did rise from the rough country that lay near the Ashley River, owing primarily to the heritage of the early settlers to the area. Looking for seasoned colonists to populate their new Carolina lands, the Lords Proprietors encouraged settlers from the Caribbean islands, especially Barbados, to migrate to the North American colony. In 1671, looking for land and favorable economic conditions, 106 colonists arrived in Charles Towne from Barbados. Many ventured up the peninsula to settle in the Goose Creek area. As the seventeenth century progressed, settlers from other Caribbean islands, as well as from England and other European nations, also migrated to the colony and acquired property along the Ashley River and Goose Creek. French Huguenots, who had fled to the colony seeking religious freedom after the 1685 revocation of the Edict of Nantes made it illegal to practice Protestantism in Catholic France, made up a large portion of the area’s population. The mixture of colonists from different backgrounds, including members of the Howe, Izard, Manigault, Middleton, and Waring families, created a unique situation that would allow for mixed-use plantation agriculture to thrive in the early years of inland settlement (Heitzler 2005:37-41; Waring 1911:5, 64).
Figure 8. Portion of de Brahm’s map of 1757 showing Dorchester settlement.

These early settlers had an important influence on many aspects of South Carolina’s culture, especially slavery. With the influence of early colonists from Barbados, where large sugar-producing plantations dominated the economy, slavery became a staple of South Carolina society much earlier than it did in other English colonies. When these settlers came to South Carolina, they brought their slaves and culture of slaveholding with them. The slaves proved to be an important source of cheap labor, which helped establish plantations and develop the land agriculturally, although no primary cash crop would dominate in the area before 1700. By 1720, slavery had become firmly entrenched as a part of South Carolina society. In that year, there were 1,800 slaves in the Goose Creek area, while there were only 80 white families, or approximately 400 total white residents; in the Dorchester area, there were around 876 whites and more than 1,300 slaves (Heitzler 2005:44, 54; Fick and Davis 1997:10).

Church was an important aspect of colonial society and the project area was located near the boundary of St. James Goose Creek Parish and St. George’s Parish, Dorchester. The parishes were geographical areas, each of which was associated with an established Anglican church; they also served as election districts. The St. James Goose Creek Parish was among the first group of seven parishes that the colonists laid out. Although the boundaries of these parishes were
formally delineated and the parishes were officially established by the Church Act of 1706, a church existed at Goose Creek even before that year, with its first recorded minister being the Reverend William Corbin in 1700. St. George’s Parish was created from the northern portion of St. Andrews Parish in 1717; the actual church building for the parish was begun in 1719 using money from subscriptions collected from parish residents (Stauffer 1994:7; Waring 1911:5-6; Dalcho 1820:345–346).

Early economic pursuits in the area included timber farming, the production of naval stores, mixed-use agriculture, and raising livestock. Farmers grew crops mostly for home or local consumption. The abundant trees in the region produced both hard and softwood lumber that could be exported to England or other colonies. The byproducts of these enterprises, such as tar, pitch, and turpentine, were necessary for the repair of naval vessels and could be sold to boats and ships docked nearby. Before 1700, Daniel Axtell began producing naval stores from the forests of Newington Plantation. In addition to the tar and turpentine he produced, Axtell also built a saw mill to make useable and saleable lumber from his trees. He built a dam on Bossua Creek (Sawmill Branch), near present day downtown Summerville, which impounded water over a 200 acre area to power his mill (Fick and Davis 1997:29).

The most profitable enterprise during the late seventeenth and early eighteenth centuries, however, was raising livestock. Cattle proved hearty and easily adaptable to the mild climates of South Carolina and herds grew quickly. Livestock production required relatively little work or attention; in the early years of the colony herds were allowed to roam free through the wooded and marshy areas. However, by 1695, wild cattle had become a nuisance and were damaging crops with their foraging, so the proprietary government passed an act requiring that all wild cattle be destroyed; following the passage of the act, owners branded their animals and exerted more control over their stocks, although supervision of the herds was still minimal. Livestock owners often corralled the animals in makeshift pastures near marshes and swamps, using the water as a natural barrier and erecting temporary fences to contain the herd. Marshes provided both grazing areas and water to the cattle, and in the winter, corn husks and stalks could be used for additional fodder when grazing was not possible. Raising hogs had similar advantages to cattle ranching. Regardless of the animals being raised, farmers involved in the livestock industry utilized slave labor almost exclusively. Because of the success of livestock, beef and pork production quickly exceeded local needs, as well as the demand in Charleston, and meat became a primary export to British colonies in the West Indies (Edgar 1998:133; Heitzler 2005:53; Trinkley and Hacker 2003:11).

In addition to their other economic pursuits, residents also engaged in trade with Indians. The Cherokee Path crossed through the area and settlers took advantage of this by bartering some of their goods for native slaves, deerskins, and furs. The residents could either keep these items to utilize them within their households or they could send them to Charleston markets for sale or to ships docked in the harbor for export. This trade allowed the Dorchester settlement, located near the head of navigation of the Ashley River and early roads, to grow as a trading point during the early 1700s. In addition to these goods, farmers gained much knowledge from the Natives, including techniques for growing such crops as Indian corn, beans, pumpkins, squash, and peas. Residents quickly assimilated these crops into their food ways (Heitzler 2005:48-49).
The Indian slave trade was present in most English colonies, but it was only in South Carolina that it reached commercial proportions (Crane 1928; Green 1992). In fact, until 1715, the port of Charles Town exported more slaves than it imported into the colony (Gallay 2002). For most of the colonial period, the control of the Indian slave trade was a significant political issue, with both the Goose Creek Men and their political opponents, the Dissenters, vying for control of the valuable trade (Edgar 1998:86, 98; Green 1992:74). In addition, there was constant conflict between the Proprietors back in England and the settlers concerning the direction and purpose of the colony. In establishing their colony, the Proprietors imposed rules that forbade the colonists from taking Indian lands by force, prohibited enslavement of Indians, and even limited trade with Native Americans (Eliades 1981; Gallay 2002). These rules were routinely ignored and the colonists not only actively pursued trade with Native Americans, they also instigated strife among their new neighbors and eventually enslaved Native Americans (Axtell 1997; Eliades 1981; Gallay 2002).

These actions served multiple purposes for the colonists. First and foremost they established amicable trading partners that provided them with a profitable commodity, deerskins (Axtell 1997; Gallay 2002). Secondly, they created a protective buffer around their colony and the unexplored backcountry, as well as from French and Spanish colonial interests to the west and south. They also kept local tribes preoccupied with each other, thereby unlikely to unite against the colonists. Finally, by capturing Native Americans as slaves, the colonists were able to secure a secondary source of income and gain access to the potentially profitable agricultural lands the Native Americans inhabited (Axtell 1997; Gallay 2002; Green 1992).

There are differing estimates of how many Native Americans were enslaved and exported from the colony of Carolina. Colonial documents record a minimum of 5,495, but there were certainly many more that were not recorded due to incomplete and lost records (Eliades 1981; Snell 1972). Historian Alan Gallay (2002:299) estimates that anywhere between 30,000 and 50,000 Native Americans were enslaved and exported before 1715. While some Native American slaves were kept in Carolina working as house servants and in other trades, most were exported to the Caribbean and northern colonies such as Virginia and New York. In the 1708 census there was a total of 1,400 Indian slaves, compared to approximately 4,000 African-American slaves and 4,000 colonists living in Carolina (Gallay 2002; Olexer 1982). By 1710, South Carolina had exported as many as 12,000 Native Americans as slaves to the West Indies and the New England colonies. Additionally, approximately 2,000 remained within the colony, accounting for about 12 percent of the total slave population (Edgar 1998:93, 137; Green 1992:74-76). While years of frustration and abuse, which culminated in the Yamasee War, disrupted the Native American slave trade, it did not end the practice abruptly but rather forced a gradual decline as Native American tribes no longer participated in slave raids against their neighbors and moved away from the colony’s borders. Furthermore this opened up the lands the colonists had long coveted, which they quickly converted to large rice and indigo plantations operated by imported African American slaves (Gallay 2002; Ramsey 2001). The colonial elite of Charles Town, including the plantation owners along the Ashley River and Goose Creek, enhanced their wealth through decades of trade in Native American slaves and deerskins despite numerous attempts by the powers in England to curb their growing influence and wealth. Despite its devastating effects, what eventually caused the end of the Indian slave trade was not the Yamasee War, but rather the
gradual economic shift to rice and indigo plantations and the numerous African American slaves that toiled in the fields of the colonial powers.

As the eighteenth century progressed, farmers in Lowcountry South Carolina developed both rice and indigo as staple crops. Both were easily adaptable to the climate and to their system of slavery. During this period, however, plantations still supported a variety of activities. For instance, the Mazyck family was making bricks in the Goose Creek area between 1745 and 1760 (Wayne 1992:51). In addition, Benjamin likely grew rice and harvested timber and/or firewood on his St. James Goose Creek plantation (Trinkley et al. 2003:46). Eighteenth century advertisements for the sale of plantations also bear testament to the multiple activities that were carried out in the area. One such advertisement extolled the virtue of a “very valuable plantation,” citing land suitable for tile and brickmaking, timber, firewood, corn, indigo, rice, and fruit trees (The City Gazette or, The Daily Advertiser February 7, 1788).

As rice and indigo became the dominant economic basis for the area, eclipsing Indian trade, naval stores, and timber, the settlement of Dorchester declined as a trading center, with most of its original residents moving to lands in Georgia by the 1750s. The increase in cash crop agriculture and the growth of plantations in the area, however, led to the development of Summerville in the late eighteenth century. Although medical knowledge was minimal in the 1700s, planters realized that the swamps and marshes that were necessary for rice and indigo agriculture were unhealthy during the warmer months. Located on an elevated ridge, and easily reached by roads and the navigable Ashley River, Summerville served as a refuge from the mosquito infestations and associated fevers that plagued rice plantations during the summer. By 1790, planters from surrounding parishes, including St. George’s and St. James Goose Creek, were spending warmer months in Summerville (Fick and Davis 1997:9, 40)

Revolutionary War and Antebellum Period

After the British orchestrated their successful siege and capture of Charleston in 1780, troops roamed throughout the area and sought to slow transportation along the rivers, cripple trade, and destroy the high-yield agricultural fields. State and Continental troops were garrisoned near Goose Creek and many residents of the area sent aid to these regiments. Plantations from the area provided foodstuffs and supplies to the troops (Heitzler 2005:16; Trinkley et al. 2003:50). During the Revolutionary War, Dorchester was a fortified post, with a garrison commanded by Francis Marion early in the conflict. In 1780–1781, it was occupied by British forces, which held Charleston at the time; these troops were driven out by Major General Nathaniel Greene in December 1781 (Gordon 2003:172).

The Revolutionary War resulted in an agricultural shift during the late 1700s and early 1800s. Independence for the colonies ended the profitable bounty that England paid for indigo. Consequently, indigo was no longer a lucrative cash crop for South Carolina residents and its cultivation virtually ended by the turn of the nineteenth century. This led to a shift toward rice as the sole staple crop of the area and it ensured that vast landholdings with large slave populations would be the most profitable enterprises (Edgar 1998:266). Some historians have asserted that the South Carolina Lowcountry was made up of large plantations surrounded by numerous smaller yeomen farms (McCurry 1995), but in the area near project tract large plantations were the norm in the post-Revolution and Antebellum eras (Figure 9). Plats from the period indicate
that the holdings of large landowners lay contiguous to one another, dominating much of the landscape, and deeds show that many of the smaller farms had been purchased by these large landowners and combined with their own holdings (South Carolina Department of Archives and History [SCDAH], Charleston County Register of Mesne Conveyance [CCRMC] 1791, 1858, 1870; Trinkley et al. 2003:47, 51).

Rice was the dominant Lowcountry crop in the eighteenth and early nineteenth centuries. It had been grown in South Carolina as early as 1685, although early cultivation was confined to upland areas where rice was grown in dry fields with well-drained soils. In the 1720s, planters began to switch their rice cultivation methods and locations, moving their crops to inland swamps where the constant moisture promoted growth and produced better yields. In this type of cultivation, planters constructed a reservoir that would hold water, which would be drained into the rice fields when needed and then drained out at a later date. Water control devices in the dam structures allowed the planters to control when, where, and how much water would flow. Most of the building and operating of these dams and reservoirs was done using slave labor. Unfortunately, this system of cultivation was extremely vulnerable to both floods and droughts, since the reservoirs were mainly filled by rainwater; either too much or too little rainfall could greatly decrease the yield for that year. As the eighteenth century progressed, rice planters again shifted their cultivation focus, moving production to areas adjacent to tidal rivers, allowing the changing tides to provide the water to flood the rice fields. Although rice planters experimented with this method of cultivation as early as 1738, it was not until the late eighteenth century that it became prevalent, and even at that time inland swamp cultivation continued in some places, including the Dorchester/Goose Creek area (Trinkley et al. 2003:16-27).

Rice remained a viable cash crop throughout the 1700s and early 1800s, partly because of the price it commanded, but the profitability of rice cultivation ultimately relied on the yield and the amount of rice a slave could produce. In the late eighteenth and early nineteenth centuries, rice cultivation became less and less profitable. Rice planters faced steep competition from rice grown in other states, including Georgia and Louisiana, and the state’s economic focus shifted from Lowcountry rice planters to the cotton farmers in the mid and upstate. By the time of the Civil War, the entire economic structure of the Lowcountry had collapsed. Although some plantations were still productive during the early portion of the nineteenth century, most planters abandoned the older rice plantations, using them for lumber production or as country retreats (Bailey and Harvey 2000:32; Edgar 1998:269-270; Trinkley et al. 2003:34; Trinkley and Hacker 2003:15-17). This led to a decline in population in the area, evidenced partly by the Mills’ Atlas map of 1825 (Figure 10), where none of the lands near the project area are labeled with plantation or owner’s names. Edmund Ruffin also documented this phenomenon in 1843, when he commented that “now these lands are almost left untilled…and the whole presents a scene of abandonment, desolation, and ruin;” it was “as much a sense of desolation as any, formerly furnished residences and plantations for many of the wealthy planters...[have now] neither resident proprietor or cultivator, with many held for timber for another place.” Similar scenes occurred throughout the Lowcountry (Edgar 1998:267; Roberts et al. 2006:16; Mills 1825).
Figure 9. Portion of Mouzon’s Map of 1775 showing Dorchester/Goose Creek area.

Figure 10. Portion of Mills’ Atlas map of Colleton District showing Dorchester/Goose Creek area.
The population figures of the St. James Goose Creek and St. George’s Dorchester Parishes, along with Charleston and Colleton counties show an interesting trend during the period between the American Revolution and the Civil War. In 1790, there were around 2,800 residents in St. James Goose Creek Parish and slaves dominated the population, making up approximately 84 percent, while in St. George’s Parish, they comprised approximately 70 percent of the nearly 4,500 residents. In the same year, slaves only accounted for 43 percent of the population of South Carolina as a whole. By 1830, the total population of St. James Goose Creek had grown to 8,632, and the percentage of slaves remained high at 78.6 percent, but had fallen from earlier figures; St. George’s population had increased to 4,721, with slaves making up 68.1 percent of this number. The state slave percentage, however, had risen to 54.3 percent. Although decreased from earlier figures, the extremely high percentage of slaves in the two parishes may indicate that only slaves inhabited many of the plantations in the area, with the owners living on other properties in different parishes. This seems to support the trend of plantations becoming retreats, where owners visited during certain times of the year, but slaves resided year round to keep the household in order. By 1860, with the Civil War on the horizon, the census takers no longer enumerated the parishes separately, but Charleston County was inhabited by 53.2 percent slaves, lower than the 57.2 percent that made up South Carolina’s population. In Colleton County, however, slaves made up 77 percent of the total population, although an estimate for St. George’s indicates that only 58 percent of the population in the parish was slaves. The high percentage of slave ownership had shifted from the former rice plantations of the Lowcountry to the more profitable tidal and upstate areas; with much of inland Colleton County containing land suitable for growing cotton, the proportion of slaves to whites in the county remained high (Inter-University Consortium for Political and Social Research [ICPSR] 1998; Fick and Davis 1997:12–13).

Civil War and Late Nineteenth Century

Although no major Civil War battles took place in Berkeley or Dorchester counties, the war and its outcome greatly affected residents of the Lowcountry. Emancipation meant that planters could no longer rely on inexpensive slave labor to plant and harvest their crops. The newly freed blacks, who had begun developing a sense of independence under the task system method of slavery that had been preferred in the Lowcountry, generally resisted laboring in the rice fields of their former masters. This essentially dealt the final deathblow to rice cultivation in South Carolina; although the lands were still fertile, rice was no longer profitable. Yet rice was still planted on a small scale throughout the second half of the nineteenth century, and in 1900, nearly 10,000 acres in Berkeley County were still planted with rice. Early in the twentieth century, rice cultivation disappeared entirely from the area.

Throughout the late 1800s, large plantation holdings were broken up and sold off. In St. James Goose Creek, the number of farms more than doubled, from 215 before the war to 563 after it. By 1890, the newly created Berkeley County had 5,999 farms, averaging 98 acres each, and by 1900, the 1,803 farms within the new Dorchester County averaged around 110 acres each. Tenant farming was the primary economic system throughout South Carolina but, near the project area, the majority of agricultural tenants worked their lands on a cash rental system, rather than the sharecropping system that prevailed in much of the state (Table 1). Ownership percentages also remained near, or above, 50 percent near the project area between 1880 and 1900, while in South Carolina as a whole they fell from 49 percent in 1880 to less than 34
percent in 1900. By the turn of the twentieth century, blacks in Berkeley and Dorchester counties enjoyed much more self-sufficiency than they did in other portions of the state. In 1900, 55 percent of black farmers in Berkeley and 43 percent of black farmers in Dorchester owned their own farms, which was well higher than the state average of around 22 percent (ICPSR 1998; Schneider et al. 1989:11).

<table>
<thead>
<tr>
<th>County and Year*</th>
<th>Cash Tenants</th>
<th>Sharecroppers</th>
<th>Owners</th>
<th>Total Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charleston, 1880</td>
<td>2,239</td>
<td>301</td>
<td>2,046</td>
<td>4,586</td>
</tr>
<tr>
<td>Colleton, 1880</td>
<td>880</td>
<td>218</td>
<td>2,118</td>
<td>3,216</td>
</tr>
<tr>
<td>Berkeley, 1890</td>
<td>2,637</td>
<td>157</td>
<td>3,205</td>
<td>5,999</td>
</tr>
<tr>
<td>Colleton, 1890</td>
<td>853</td>
<td>247</td>
<td>2,767</td>
<td>3,867</td>
</tr>
<tr>
<td>Berkeley, 1900</td>
<td>1,317</td>
<td>158</td>
<td>1,955</td>
<td>3,790</td>
</tr>
<tr>
<td>Dorchester, 1900</td>
<td>551</td>
<td>78</td>
<td>1,009</td>
<td>1,803</td>
</tr>
</tbody>
</table>

*Berkeley County was formed in 1882 and Dorchester County was formed in 1897; preceding data represents the counties that Berkeley and Dorchester were formed from.

The end of rice cultivation made large plantation holdings near upland swamps and rivers obsolete. For most former planters it was too expensive to hold onto these lands while they remained uncultivated. With debt becoming a significant problem in the state, many of these former members of the wealthy elite were forced to sell their plantations to Northern investors. Some of these new owners looked to implement scientific and technologically advanced farming, while at the same time restoring many of the old plantation homes and outbuildings. More often, however, these northerners utilized their new lands as “gentleman farms” where they raised horses, or as hunting retreats (Heitzler 2005:88-103; Roberts et al. 2006:17).

In addition to farming practices, settlement patterns also changed in the late nineteenth century. Rivers were no longer the most important transportation method in the Lowcountry as the railroad was becoming the dominant method for moving both goods and people. Small settlements along railroad lines thrived and grew into railroad stops, post office locations, and eventually cities. Railroad connections were an important element of growth during this period; towns that had them generally expanded while growth stagnated in towns that did not.

Summerville had benefitted from the railroad since before the Civil War, when the Charleston to Hamburg line was begun by the South Carolina Railroad and Canal Company, in 1830. By June 1832, the railroad was open to Summerville and by October 1833, it was finished to Aiken. When the line was begun, Summerville was already an attractive destination in warmer months for nearby planters and had at least 23 homes, as well as both an Episcopal and Congregational church. Using land that it had purchased for timber, the South Carolina Railroad and Canal Company laid out “New Summerville” following a grid pattern in 1832. Growth in the town continued as it remained a summer destination and became a regional center for trade during the mid to late 1900s. In 1858, a Town Hall was constructed; by 1860, Summerville boasted five hotels/boardinghouses, nine stores, and 372 dwellings. Industrial enterprises, such as the brick works of Thaddeus W. Stanland, the building supply business of A. W. Taylor and Company, an ice plant, Summerville Hardwood Company, and multiple corn, grist, and sawmills, began emerging in the 1880s and continued into the twentieth century. In 1892, a new Town Hall was built to serve the growing population (Fick and Davis 1997:40–42).
In 1882, population shifts towards inland transportation routes and changes in the political structure in the state led to the re-creation of Berkeley County, which included the old parish of St. James Goose Creek, from part of Charleston County. Five years later, Dorchester County was created from portions of Colleton and Berkeley counties (Heitzler 2005:3; Stauffer 1994:17).

Twentieth Century

Beginning in the 1880s, forest products again became a primary economic resource for the area, with the founding of two lumber companies based in Summerville. One of these, the D. W. Taylor company, owned more than 25,000 acres along the Dorchester and Berkeley county lines and built a 10-mile narrow gauge, logging railroad through its holdings. J. Frank Prettyman began his Summerville sawmill in 1902 and in the early twentieth century, his company purchased D. W. Taylor’s Summerville and St. John’s Railroad, eventually expanding it to connect to the Atlantic Coast line at Cross, in Berkeley County (Figures 11 and 12). Prettyman’s mill, which was producing 40,000 feet of lumber daily by 1910, was the predecessor of the former Flack-Jones Mill of MeadWestvaco (Fick and Davis 1997:30). Other enterprises in area during the early twentieth century included golf courses, an experimental tea farm, and nurseries that capitalized on the popularity of Summerville’s gardens with northern tourists.

In 1941, the United States Navy purchased over 6,000 acres near the intersection of the Cooper and Back rivers, to house a facility that would receive and distribute the ammunition that was allocated for ships built at the Charleston Naval Shipyard. Within a year, the navy annexed more land, expanding the Naval Weapons Station to nearly 12,000 acres. With a shortage in housing for the increased population of military workers, Summerville became a convenient alternative to living in Charleston. The inns in Summerville, once a warm weather destination for tourists, housed officers, enlisted men, and civilian employees of the Naval Shipyard and the Army Port of Embarkation in Charleston. Many private homes were also enlarged and rooms were rented out to military personnel (Fick and Davis 1997:43).

After World War II, the fortunes of the station were in jeopardy, but the need to outfit new submarines with missiles during the second half of the twentieth century benefited the Charleston establishment. Today, the Naval Weapons Station encompasses more than 17,000 acres along the west banks of the Cooper and Back Rivers. The end of the war and continued military presence led to a large amount of building, including residential, commercial, municipal, and industrial, that fueled the timber industry in the area. The Naval Station has provided both military and civilian jobs since its commissioning in 1941, and has contributed to the growth of the Goose Creek/Dorchester area (Naval Weapons Station Charleston 2006; Fick and Davis 1997:44). In the late twentieth century, the lower portions of Berkeley and Dorchester counties have experienced prolific population growth.
Figure 11. Portion of 1916 USDA Soil Survey Map showing approximate location of the project area.

Figure 12. Portion of 1920 USGS topographic map showing approximate location of the project area.
Previously Recorded Cultural Resources

On November 11, 2011, a background literature review and records search was conducted at the South Carolina Institute of Archaeology and Anthropology (SCIAA) in Columbia. The area examined was a 0.5-mile radius around the project area (Figure 1). The records examined included a review of ArchSite, a GIS-based program containing information about archaeological and historic resources in South Carolina. If cultural resources were found within the 0.5-mile search radius, then additional reports and site forms contained at SCIAA and the South Carolina Department of Archives and History (SCDAH) were consulted.

A review of ArchSite indicated there is one previously recorded archaeological site and two previously recorded above ground structures within a 0.5-mile radius of the project area (Table 2, Figure 1). Site 38BK1928 is a twentieth century house site that was determined not eligible for inclusion in the NRHP. Structure 496-0007 is a house that dates to around 1910 and Structure 496-0797 is a house constructed around 1920, both resources were determined to be not eligible for inclusion in the NRHP.

Table 2. Previously recorded cultural resources within a 0.5-mile radius of the project area.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Description</th>
<th>NRHP Eligibility</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>38BK1928</td>
<td>20th century house site</td>
<td>Not Eligible</td>
<td>Gantt et al. 2002</td>
</tr>
<tr>
<td>496-0007</td>
<td>Unnamed house, ca. 1910</td>
<td>Not Eligible</td>
<td>Schneider et al. 1989</td>
</tr>
<tr>
<td>496-0797</td>
<td>Unnamed house, ca. 1920</td>
<td>Not Eligible</td>
<td>Gantt et al. 2002</td>
</tr>
</tbody>
</table>

As part of the background research, Henry Mouzon’s (1775) map of North and South Carolina (Figure 9), Mills’ Atlas (1825) (Figure 10), a 1916 United Stated Department of Agriculture (USDA) soil survey map (Figure 11), and a 1920 United States Geological Survey (USGS) topographic map (Figure 12) were examined. Mouzon’s map indicates that in 1775 the project area was along the boundary between St. Georges Dorchester Parish and St. James Goose Creek Parish, within Charleston Precinct. This map also shows the location of the colonial village of Dorchester to the south, along with Accles and Doler as landowners in the vicinity of the project area. Mills’ Atlas map of Colleton District shows no landowners within the project area in the early nineteenth century. The soil survey map of 1916 shows two structures within the project area, along the road that forms the eastern boundary of the tract; the 1920 USGS topographic map shows four structures within the project area, also along the roads located near the center and eastern boundary of the project area. No evidence of the two structures on the 1916 soil survey was identified during the survey; however, site 38BK2410 is located in the vicinity of one of the structures shown on the 1920 USGS topographic map. A 1990 topographic map shows no structures within the project area. The three buildings that were shown along the eastern portion of the project area on the 1920 map were likely demolished by a realignment of Washington Town Road.
IV. METHODS

Archaeological Field Methods
Shovel tests pits (STPs) were excavated at 30-m intervals along transects spaced 30-m apart. Site boundaries were determined by excavating shovel tests at 15-m intervals radiating from an initial positive shovel test until two negative shovel tests were excavated. Sites were recorded in the field using field journals and standard S&ME site forms, and documented using high resolution digital photographs (four megapixel or higher resolution) and detailed site maps.

Shovel tests were at least 30 cm in diameter and excavated to sterile subsoil, water table, or at least 80 cm below surface (cmbs), whichever was encountered first. Soil from the shovel tests was screened through ¼-inch wire mesh. Sites were located using a Garmin GPSMAP 76 receiver (capable of up to 5-m accuracy with WAAS correction) and plotted on USGS 7.5 minute topographic maps. Artifacts recovered during the survey were organized and bagged by site and relative provenience within each site.

For purposes of the project, an archaeological site is defined as an area yielding three or more historic or prehistoric artifacts within a 30-m radius and/or an area with visible or historically recorded cultural features (e.g., shell middens, cemeteries, rockshelters, chimney falls, brick walls, piers, earthworks, etc). An isolated find is defined as no more than two historic or prehistoric artifacts found within a 30-m radius (COSCOPA et al. 2005).

Laboratory Methods
Artifacts recovered during the survey were cleaned, identified, and analyzed using the techniques summarized below. Following analysis, artifacts were bagged according to site, provenience, and specimen number. Acid-free plastic bags and artifact tags were used for curation purposes. For labeling, Acryloid B-72 was used as a base coat and archival pigment pens were used to write the accession numbers on artifacts greater than one inch in size. Once the numbers were dry, Acryloid B-67 was used as a top coat/sealant.

Lithic artifacts were initially identified as either debitage (flakes and shatter) or tools. Debitage was sorted by raw material type and size graded using the mass analysis method advocated by Ahler (1989). When present, formal tools were classified by type, and metric attributes (e.g., length, width, and thickness) were recorded for each unbroken tool. Projectile point typology generally followed those contained in Coe (1964), Justice (1987), and Oliver (1985).

Prehistoric ceramics greater than 1 cm² were sorted first by sherd type (rim or body), surface treatment, and temper (using the Wentworth scale). Once sorted, these categories were further analyzed for other diagnostic attributes such as paste texture, interior treatment, rim form, and rim/lip decoration. Where possible, this data was used to place the sherds within established regional types. Information on the ceramic typology of the project area was derived primarily from Anderson et al. (1996), Coe (1964), DePratter (1979), Sassaman et al. (1990), Trinkley (1990), and Ward and Davis (1999). Sherds less than 1 cm² were classified as “residual sherds” and only their count and weight were recorded.
Historic artifacts were separated by material type and then further sorted into functional groups. For example, glass was sorted into window, container, or other glass. Maker’s marks and/or decorations were noted to ascertain chronological attributes using established references for historic materials, including Noel Hume (1970), South (1977) and Miller (1991).

The artifacts, field notes, maps, photographs, and other technical materials generated as a result of this project will be temporarily curated at the S&ME office in Columbia. Upon conclusion of the project, project materials will be delivered to a curation facility meeting the standards established in 36 CFR Part 79, Curation of Federally-Owned and Administered Archaeological Collections.

Architectural Survey

In addition to the archaeological survey, an architectural survey was conducted to determine whether the proposed project would affect any aboveground National Register listed or eligible properties within the proposed APE. Accessible roads within the APE were driven, and existing aboveground structures were examined for National Register eligibility using the Criteria established by the U.S. Department of the Interior and the National Park Service. Structures that were 50 years old or older and visually connected to the proposed project area were digitally photographed and marked on the applicable USGS topographic quadrangle map. Photographs were also taken from the property toward the project area to help assess possible visual effects caused by the undertaking. Structures that were highly deteriorated were excluded, as well as structures whose original form had been significantly modified.

National Register Eligibility Assessment

For a property to be considered eligible for the NRHP it must retain integrity of location, design, setting, materials, workmanship, feeling, and association (National Register Bulletin 15:2). In addition, a property must meet one or more of the criteria below:

A. are associated with events that have made a significant contribution to the broad patterns of our history; or
B. are associated with the lives of persons significant in our past; or
C. embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. have yielded or may be likely to yield information important in history or prehistory.

The most frequently used criterion for assessing the significance of an archaeological site is Criterion D, although other criteria were considered where appropriate. For an archaeological site to be considered significant, it must have potential to add to the understanding of the area’s history or prehistory. A commonly used standard to determine a site’s research potential is based on a number of physical characteristics including variety, quantity, integrity, clarity, and environmental context (Glassow 1977). These factors were considered in assessing a site’s potential for inclusion in the NRHP.
V. RESULTS

On December 5–7, 2011, S&ME conducted a Phase I cultural resource survey of the 323-acre Omni Commerce Park. Within the project area are 61 acres of delineated wetlands, 36 acres of buffer area surrounding the wetlands, 100 acres that have been heavily disturbed, and 127 acres of uplands. The wetlands and surrounding buffer areas (conservation areas), as well as the heavily disturbed areas were excluded from the Phase I survey.

Archaeological Survey

During the archaeological survey, 428 shovel tests were excavated within the project area. As a result of this survey, one new archaeological site, 38BK2410, was identified (Figure 6).

Site 38BK2410

<table>
<thead>
<tr>
<th>Site Number: 38BK2410</th>
<th>NRHP Recommendation: Not Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type: Artifact Scatter</td>
<td>Elevation: 70 ft AMSL</td>
</tr>
<tr>
<td>Components: Early to mid 20th century</td>
<td>Landform: Plain</td>
</tr>
<tr>
<td>UTM Coordinates: E575989, N3660260 (NAD 27)</td>
<td>Soil Type: Lynchburg fine sandy loam</td>
</tr>
<tr>
<td>Site Dimensions: 90 m E/W x 15 m N/S</td>
<td>Vegetation: Grass</td>
</tr>
<tr>
<td>Artifact Depth: Surface only</td>
<td>No. of STPs/Positive STPs: 18/0</td>
</tr>
</tbody>
</table>

Site 38BK2410 is a twentieth century artifact scatter located in the east central portion of the project area along a dirt road (Figures 1 and 2). The artifact scatter is located in the same vicinity as a structure recorded on the 1920 USGS Summerville topographic map, this structure is not present on the 1916 soil survey (Figures 11 and 12). Site 38BK2410 measures approximately 90 m east-west by 15 m north-south and is bounded by two negative shovel tests in each cardinal direction (Figure 13). Site 38BK2410 is located on the surface of a dirt road with a fallow field to the north and planted pine to the south (Figure 14).

Eighteen shovel tests were excavated in and around the site; however, all of the artifacts were recovered from the surface of the dirt road. A typical soil profile in a negative shovel test consisted of 15 cm of dark gray (10YR 4/1) sandy loam (Ap horizon), followed by 15+ cm (15–30+ cmbs) of mottled yellowish brown (10YR 5/8) sandy clay loam and gray (10YR 6/1) clay loam subsoil. Only three historic artifacts were recovered from the surface of the site: two pieces of undecorated whiteware and one piece of cobalt blue glass. Based on these artifacts and the historic maps, the site dates to the early to mid-twentieth century. Additional pieces of whiteware and glass were noted on the surface but were not collected.

Site 38BK2410 is a twentieth century artifact scatter located in the vicinity of a structure identified on the 1920 Summerville topographic map. The site contains a small quantity and limited variety of artifacts all recovered from the surface of the site. As such, the site has little archaeological integrity and is unlikely to yield significant information about the history of the area. In addition, site 38BK2410 has no associations with persons or events that have made a significant contribution to history and none of the materials collected embody distinctive
characteristics of a type, period or method of construction. Based on these reasons and the lack of site integrity, we recommend that 38BK2410 is not eligible for inclusion in the NRHP.

Architectural Survey

In addition to the archaeological survey, an architectural survey was conducted to help determine whether the proposed project would affect any aboveground historic properties. Buildings or structures that are 50 years of age or older within a 0.5-mile radius of the project area were recorded and photographed. There were no previously unrecorded structures identified during the cultural resource survey of the proposed Omni Commerce Park or surrounding APE.
Figure 14. Site 38BK2410, facing east.
VI. SUMMARY AND RECOMMENDATIONS

S&ME has completed a Phase I cultural resource survey of the proposed 323-acre Omni Commerce Park in Berkeley County, South Carolina (Figures 1 and 2). Cultural resource investigations in the project area resulted in the identification of one new archaeological site, 38BK2410; no newly recorded above ground structures were noted within the proposed APE (Figure 6, Table 2). Site 38BK2410 is an early to mid twentieth century artifact scatter that is in the vicinity of two historic structures identified on the 1920 USGS Summerville topographic quadrangle (Figure 12). The structures are no longer standing, there was no evidence of their remains, and the site was limited to a small artifact scatter located along the surface of a dirt road. Because the site lacks integrity and is unlikely to yield significant information about the history of the area, site 38BK2410 is recommended ineligible for inclusion in the NRHP.

Based on these results, the approximate 323-acre project area does not contain any significant cultural resources. As a result, we recommend that no historic properties will be affected by the proposed undertaking and that no additional cultural resource investigations should be required for the proposed Omni Commerce Park.
REFERENCES CITED

Adovasio, James M., J. Donahue, and R. Stuckenrath

Adovasio, James M., J.D. Gunn, J. Donahue, R. Stuckenrath, J.E. Guilday, and K. Lord

Adovasio, James M., J.D. Gunn, J. Donahue, R. Stuckenrath, J.E. Guilday, and K. Volman

Ahler, Stanley A.

Anderson, David G.

Anderson, David G., Charles E. Cantley, and A. Lee Novick

Anderson, David G., and J. W. Joseph
Anderson, David G., and Glen T. Hanson

Anderson, David G., John S. Cable, Niels Taylor, and Christopher Judge

Anderson, David G., and Lisa O’Steen

Anderson, David G., Lisa O’Steen, and Kenneth E. Sassaman

Anderson, David G., and Kenneth E. Sassaman (editors)

Anderson, David G., Kenneth E. Sassaman, and Christopher Judge (editors)

Axtell, James

Bailey, Ralph Jr., and Bruce G. Harvey

Blanton, Dennis B., and Kenneth E. Sassaman

Cantley, Charles E. and John S. Cable
The City Gazette or, The Daily Advertiser [Charleston, South Carolina]

Clement, Christopher Ohm, Ramona Grunden, and Amy C. Joyce

Coe, Joffre Lanning

Council of South Carolina Professional Archaeologists [COSCAPA], South Carolina State Historic Preservation Office, and South Carolina Institute of Archaeology and Anthropology
2005 South Carolina Standards and Guidelines for Archaeological Investigations. South Carolina Department of Archives and History, Columbia.

Crane, Verner W.

Dalcho, Frederick
1820 An Historical Account of the Protestant Episcopal Church in South Carolina. E. Thayer, Charleston.

Davis, R.P. Stephen Jr., and Brett H. Riggs

De Brahm, William Gerard
1757 A Map of South Carolina and a Part of Georgia. Thomas Jefferys, London.
Delcourt, P. A., and H. A. Delcourt

DePratter, Chester B.

DePratter, Chester B., and Chris Judge

Dillehay, T. C.

Edgar, Walter

Eliades, David K.

Fick, Sarah and Steven Davis

Gallay, Alan

Gantt, Mary E., Kenneth F. Styer, Jon Bloom, and Robert S. Webb

Glassow, Michael A.
Goodyear, Albert C., III

Goodyear, Albert C., III, James L. Michie, and Tommy Charles

Gordon, John W.

Green, William

Green, William, and James Bates

Green, William, and Jeffrey Holland

Groover, Mark D.

Hanson, Glen T., and Chester B. DePratter
1985 *The Early and Middle Woodland Periods in the Savannah River Valley*. Paper Presented at the 42nd Annual Meeting of the Southeastern Archaeological Conference, Birmingham.
Heide, Gregory, and Michael Russo

Heitzler, Michael J.

Herbert, Joseph M., and Mark A. Mathis

House, John, and David Ballenger

Inter-University Consortium for Political and Social Research (ICPSR)

Johnson, Suzanne, and Charles Philips Jr.

Justice, Noel D.

Kovacik, Charles F. and John J. Winberry

Long, Bobby

Marrinan, Rochelle A.

McAvoy, Joseph M., and Lynn McAvoy
McDonald, Jerry N.
2000 An Outline of the Pre-Clovis Archaeology of SV-2, Saltville, Virginia, with Special

Meltzer, David J., Donald K. Grayson, Gerardo Ardila, Alex W. Barker, Dena F. Dincauze, C.
Vance Haynes, Francisco Mena, Lautaro Nunez, and Dennis Stanford
1997 On the Pleistocene Antiquity of Monte Verde, Southern Chile. *American Antiquity*

Milanich, Jerald T.
1971 *The Deptford Phase: An Archaeological Reconstruction*. Ph.D. dissertation, University of
Florida. University Microfilms, Ann Arbor, Michigan.

Milanich, Jerald T. and Charles H. Fairbanks

Miller, George L.
Material Culture Research for Historical Archaeologists*, G.L Miller, O.R. Jones, L.A. Ross,
and T. Majewski, compilers, pp.37–58. Society for Historical Archaeology, Ann Arbor,
Michigan.

Mills, Robert

Mouzon, Henry, Jr.
1775 *An Accurate Map of North and South Carolina, with their Indian Frontiers*. Sayer and J.
Bennet, London.

Noel Hume, Ivor

Olexer, Barbara
York.

Oliver, Billy
1985 Tradition and Typology: Basic Elements of the Carolina Projectile Point Sequence. In
Ramsey, William L.

Reid, Dawn, Connie Huddleston, Marian Roberts, Joseph Sanders, Thomas Neumann, and Bobby Southerlin

Ritchie, William A.

Roberts, Katherine, William Green, and Geoffrey Henry
2006 *Phase II Archaeological Testing at Site 38BK2088 Located at the Newell Tract, Berkeley County, South Carolina.* Report prepared for VM Enterprises, Summerville, South Carolina. Report prepared by TRC, Inc., Columbia, South Carolina.

Rowland, Lawrence S., Alexander Moore, and George C. Rogers, Jr.

Russo, Michael, and Gregory Heide

Sassaman, Kenneth E.

Sassaman, Kenneth E., and David G. Anderson (editors)

Sassaman, Kenneth E., Meggan E. Blessing, and Asa R. Randall
Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson

Saunders, Rebecca, and Michael Russo
2002 *The Fig Island Ring Complex (38CH42): Coastal Adaptation and the Question of Ring Function in the Late Archaic*. Report prepared for the South Carolina Department of Archives and History, Columbia.

Schneider, David B., Sarah Fick, and John Laurens

Snell, William Robert

Soller, David R and Hugh H. Mills

South, Stanley

Southerlin, Bobby, Dawn Reid, Connie Huddleston, and Joseph Sanders
1997 *The Grand Strand Frontier: Mississippian Period Occupation at The Tidewater Site (38HR254), Horry County, South Carolina*. Report prepared for Tidewater Golf Club and Plantation, by Brockington and Associates, Inc. Atlanta

Stauffer, Michael E.

Stoltman, James B.
Trinkley, Michael B.

Trinkley, Michael, and Debi Hacker

Trinkley, Michael, Debi Hacker, and Sarah Fick

United States Department of Agriculture

United States Geological Survey (USGS)

Wagoner, Paige and Charles F. Philips Jr.

Waring, Antonio J., Jr., and Preston Holder

Waring, Joseph Ioor
1911 St. James Church, Goose Creek, S.C. A Sketch of the Parish from 1706–1909. The Daggett Printing Company, Charleston.
Wayne, Lucy B.

Williams, Stephen B. (editor)